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Abstract 

The purpose of this article is to apply the concept of the spectral triple, the starting point for the 
analysis of noncommutative spaces in the sense of Connes (1994) to the case where the algebra 
A contains both bosonic and fermionic degrees of freedom. The operator 2) of the spectral triple 
under consideration is the square root of the Dirac operator and thus the forms of the generalized 
differential algebra constructed out of the spectral triple are in a representation of the Lorentz group 
with integer spin if the form degree is even and half-integer spin if the form degree is odd. However, 
we find that the 2-forms, obtained by squaring the connection, contain exactly the components of 
the vector multiplet representation of the supersymmetry algebra. This allows to construct an action 
for supersymmetric Yang-Mills theory in the framework of noncommutative geometry. 
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1. Introduction 

In the past years it has turned out that noncommutative geometry [l] offers a powerful 
mathematical framework for the study of fundamental interactions in physics. The con- 
struction of models for the electroweak and strong interaction in terms of noncommutative 
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geometry, i.e. the Connes-Lott models [ 1,2] and the model of the Marseill-Mainz group [3- 
5], has led to a new qualitative insight into the spontaneous symmetry breaking mechanism 
of the Standard Model. 

The basic idea of noncommutative geometry is to generalize geometric concepts such 
that they can be applied to more general situations where it is meaningless to consider, e.g. 
points connected by arcs. This allows to relax the physical notion of space-time such that our 
classical space-time may emerge as a “classical-limit” of a more general noncommutative 
space-time. This idea has been followed in [6] where uncertainty relations for space-time 
variables were implemented and their consequences were studied. A different approach to 
utilize this more general framework is to consider a sequence of finite-dimensional algebras 
which approximate the algebra of functions on a classical manifold, like the fuzzy sphere [7], 
and study a quantum field theory on such geometries [8-101. Here the noncommutativity 
of the geometries serves as a regulator for the field theory. 

However, the novel feature of these approaches to derive the Standard Model in the 
framework of noncommutative geometry is not a generalization of space-time itself. In 
those models a discrete space, i.e. a space consisting of two points, is added to a conventional 
space-time. This effects the internal symmetries of the theory such that the Higgs becomes 
a part of a generalized gauge potential. Similar ideas have been followed in [ 111. It has 
turned out that the Connes-Lott models and their successors [12] based on real spectral 
triples do not only lead to qualitative restrictions compared to conventional Yang-Mills 
Higgs models, but also serve numerical relations for the Higgs mass and top-mass [ 131. 

We take this as a motivation to explore the concept of the spectral triple, the basic in- 
put data for Connes-Lott models, in a more general context. In Connes-Lott models the 
notion of space-time was generalized to incorporate the symmetry breaking mechanism 
of internal symmetries. In this article we will analyze a spectral triple of a supermanifold, 
i.e. of a generalization of space-time which includes fermionic degrees of freedom. This 
leads to a generalization of space-time symmetry, namely to supersymmetry. The general- 
ized differential algebra, which is constructed out of the spectral triple, is used to derive an 
action for N = 1 supersymmetric Yang-Mills theory although it is not the usual superdif- 
ferential algebra [14]. The basic difference of the generalized differential algebra to the 
conventional superdifferential algebra [ 141 is the absence of space-time differentials, i.e. 
the absence of space-time or vectorial l-forms. Thus the differential algebra is generated 
only by spinorial l-forms and the differential splits into a holomorphic and an antiholo- 
morphic part, which are in (i, 0), the left-handed spin $ representation, resp. in (0, i), 
the right-handed spin i representation of the spin group. As in usual Yang-Mills theory, 
the action is obtained by squaring the curvature, which itself is the square of a covariant 
derivative. 

There are several articles in the literature which deal with various aspects of supersym- 
metry and noncommutative geometry. For example in [ 151 noncommutative geometry is 
applied to supersymmetric constructive field theory. Furthermore let us just mention those 
articles which have a direct relation to models for the electroweak interaction. For the 
Marseill-Mainz model a Z2 graded structure plays a fundamental role in the sense that this 
model is based on a supergroup. However, the supergroup is not a symmetry group and 
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therefore supersymmetry is not realized [5]. For the construction of gauge theories based 
on graded groups see e.g. [ 16,171. 

The relation of supersymmetry and Connes-Lott models was investigated by Chamseddine 
[ 181 who explored the possibilities of arranging the elements of spectral triples of Connes- 
Lott models such that the resulting model is supersymmetric. Note, however, that although 
we also use the concept of spectral triples our work is essentially different from [ 181. 

In Section 2 we briefly recall the definition of the spectral triple which allows us to indicate 
the starting point of our construction. Furthermore we introduce the commutative *-algebra 
A of the spectral triple which is a modified algebra of superfields. The construction of the 
spectral triple is completed by specifying the representation of A on a Hilbert space 7-t 
and by defining the self-adjoint unbounded operator V. In Section 3, after a brief outline 
of the general procedure, we start the construction of the generalized differential algebra 
with the definition of the generalized Clifford algebra. Its holomorphic structure and the 
relation to supersymmetry are discussed. The construction of the generalized differential 
algebra is completed in Section 4. A supersymmetric invariant inner product is constructed 
in Section 5. Section 6 contains our derivation of supersymmetric Yang-Mills theory. This 
article ends with some concluding remarks in Section 7. 

2. The spectral triple 

The basic object in noncommutative geometry defining the geometrical framework is the 
spectral triple (A, ‘FI, V) [ 1,121. A, the first element of this triple, is an associative *-algebra 
of bounded operators with a unit in a Hilbert-space ‘H, the second element of the spectral 
triple. The last element, D, is a self-adjoint unbounded operator in ?f such that: 
(i) D has a compact inverse (modulo a finite-dimensional kernel), 

(ii) [D, a] = 2)a - aV is bounded for any a E A. 
Frequently the last two objects (‘H, Do> are called a K-cycle over A. These three elements 
together encode all geometric information of a space as spectral data. For example, it is 
possible to construct a differential algebra for this space, where the operator V defines the 
differential. This is the starting point for Yang-Mills theory in noncommutative geometry [ 1 ] 
(see, e.g. [ 19,201 for a review). We should mention that we only gave the definition of spectral 
triples of compact spaces. However, it is also possible to define spectral triples for spaces 
which are only locally compact [ 121. 

The spectral triple describing the geometry of a compact spin manifold M is given by 
(P(M), Lz(S), D), where C”(M) are the smooth functions on M, L2(S) is the Hilbert 
space of square-integrable spin-sections and D is the usual Dirac operator [ 1,121. The 
differential algebra derived from this triple is the de Rham algebra of differential forms on 
M. 

Let us express the operator V of this example, the Dirac operator, in a somewhat different 
terms which refers to (symmetry) transformation of M. Thus we think of the Dirac perator 
D = ypV, as a composition of two kinds of objects: 
(i) the generators of parallel displacement or covariant derivative V,, 
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(ii) the generators of the Clifford algebra corresponding to the vector space of generators 
of parallel displacement. 

There is a well-known generalization of this Lie algebra of parallel displacement in physics: 
the supersymmetry (for the rest of the article we restrict ourselves to the case in which the 
manifold M is flat), which is generated by Q and e. The fundamental commutation relation 
is 

[EQ, ZQ] = 2isa@S$, (2.1) 

where E is a constant anticommuting chiral spinor and E is a antichiral spinor, related to E by 
charge conjugation, i.e. E and E together form a Majorana spinor. This implies that in four 
dimensions an Euclidean space-time metric is excluded. However, the noncommutative 
analog of an integral, the Dixmier trace, is defined only on Euclidean space. On the other 
hand, the construction of the generalized differential algebra does not refer to the signature 
of space-time. Furthermore, the special structure of the Hilbert space, which will be defined 
below, allows us to define an inner product on the generalized Clifford algebra which induces 
an inner product on the generalized differential forms. This leads to a supersymmetric 
invariant action which is defined without using the Dixmier trace. 

The purpose of this article is to encode the generalization of space-time in the sense of 
Eq. (2.1) in the spectral triple. Therefore we have to extend the algebra of (bosonic) functions, 
C”(M) by fermionic quantities. Thus we have to include the spinors as anticommuting, i.e. 
as Grassmann-odd, objects in the algebra. In order to maintain the regularity of the algebra 
we restrict ourselves to the dense subspace of smooth spinors T(S) c L4S). Furthermore 
it is useful to split r(S) into its irreducible parts of the Lorentz group: 

P(S) = f(S+) @ r(K), * = (1c’(y,jTdl). (2.2) 

The indices a! E (1,2) and d! E { 1,2] can be raised and lowered with the antisymmetric 
tensors PB and E&B. We use the convention of [ 141, i.e. 

E21 =& I2 = 1 (2.3) 

for both s-tensors with dotted and undotted indices. 
The multiplication rules of spinors are most conveniently described with the help of a 

constant anticommuting Majorana spinor 8. Thus the algebra du is generated by elements 
go of the form 

- 
go = f+e*+lX +0&x A, f E Cm(M), hkd?) E r(S), (2.4) 

is the usual algebra of superfields [ 141. A general element au E dry can be expanded in 
powers of (0, e> as follows: 

a0 = al + eaa2@ + &as” + e%&a4; + 8eu5 + Z& 
- - 

+eee’Yu7, + eeekusk + ee@u9 . (2.5) 

The *-operation is defined on the generators gu as complex conjugation on functions and 
charge conjugation on spinors. This definition extends uniquely to the whole algebra du. 
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However, this algebra is not well suited for our purpose as will become clear when we 
compute the generalized differential algebra. Therefore we enlarge the algebra by taking 
spinor doublets as generators of the algebra A, i.e., we define A to be the algebra which is 
generated by elements g of the following form 

For a generator g as in Eq. (2.6) the *-operation is defined to be 

g*=f+e’XXa@D++&~@iL (2.7) 

The multiplication for elements in C2 is just the totally symmetrized tensor-multiplication. 
Thus a general element a E A can be expanded in powers of (0, 3) as follows: 

a = ar + e(y@&. @ J2) +&a,” @ uC3) 

+85&$2& 8 (IJY) 8s I$‘) + ma5 &I (Ui5) C%3S vi5’) + ECllj 63 (lp C3s I$‘) 

+eefFu_r @I (vC7) @ UC7) s 2 as LJ:~)) + ekGbusk 63 (~1~) B,~ tf) c3s Y$~)) 

+eeG%gL (vid, c3s VP) as II?) c3s II:)). w3) 

There is no direct definition of supersymmetry generators on A which could be obtained as 
generalization of the supersymmetry generators on & which are defined as follows: 

Qa = i3, - i&k?, ed, = -ad, + iB(” &d(. (2.9) 

Here & = a/W, 3, = ala? denote the derivatives with respect to 8” and e, and 

gUdl = 0,” acL, where ai = -a’, i = 1,2,3, denote the Pauli matrices and a0 = ?Yc = 

12x2. 
However, for any fixed u E C2 with V = IJ there is an embedding 

i, : do - A, (2.10) 

which is defined on the generators of dc as 

Thus this allows us to define the supersymmetry generators on the subalgebra A, = i,(h) 

ofdas 

Q’“’ = i,Q&‘, (Y B!$ = i”D&j,‘. (2.12) 

Explicitly these generators read 
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where u* denotes the dual vector of v, i.e. u*(u) = 1. However, the action of u* on higher 
powers of v is defined to be 

v*(v”) = v*(u @Is . . . gJs v) = d-‘. (2.14) 

This definition follows directly from Eq. (2.12). The action of 2r* on higher powers of u 
differs from the action of a derivative and therefore there is no direct extension of this 
definition to symmetric tensor products of arbitrary vectors. On the other hand, if II* would 
act like a derivative on tensor products, the operators defined in Eq. (2.13) would not generate 
a supersymmetry algebra. 

We now turn to the next element of the spectral triple, the space X, which carries a 
representation of A. A representation space 7-1, can be constructed out of the algebra _A0 
generated by elements of the form as in Eq. (2.4) as follows: 

(2.15) 

where we have defined 

d, =dt@n Vn EB. (2.16) 

Thus 7i, is the H-fold copy of do. We will call the index n the S-number, i.e. for all elements 
Qn Ednitis 

S(@,) = n. (2.17) 

The inner product (., .) on this space we define for any & = rP @I k E dk, 01 = Q, 81 E Al 
as 

where leeg denotes the projection onto the BB@-component of the 0, e-expansion of the 
superfields. Thus it is the usual indefinite inner product on the algebra of superfields do 
multiplied by an indefinite inner product on Z. Note that the supersymmetry generators, 
as defined in Eq. (2.9), also are well defined on 31, and that the inner product, defined in 
Eq. (2.1 S), is invariant under supersymmetry transformations. 

For the definition of a representation of A on IH, we have to introduce two operators S+ 
and S_ which act on elements !P @ k E 31, as follows: 

S+(*CiQk)=‘J’@(k+l), S-(P@k)=W@(k-l), Vk E Z. (2.19) 

These S+ and S- are self-adjoint and S+ S- = S-S+ = 1. With these operators we cm 
define a representation n(a) on % for all a E A with a 8, &expansion as in Eq. (2.8) as 
follows: 
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+@8”a7, C~CI V/7)vi7)v:7) + eeGbash 8 v/8)vi8) v,‘“) 
+ee88a9 c3 vc9) vc9) vc9) vc9) 12 3 4’ 

83 

(2.20) 

where we used the notation 

VY = (u!j))+S+ + (u!j’)_S_ I I P = ((v!“),, (vjj’)_) E c2. ’ I (2.21) 

From Eq. (2.20) we can read off the range of the S-numbers of the components in the 8, e 
expansion 

S(ak) e (-n, -n + 2,. . . , n - 2, n), (2.22) 

where n i 4 is the power of (0, ??) at which the component appears. 
Due to the fact that du has a unit element 1, there is an invariant subspace ‘FId c IH, 

which is generated by A, 

?id = A(1 80) = AIO). (2.23) 

This allows us to define an (indefinite) inner product on A as 

(a, b) = ((alO)), (b(0))) = (Ola*blO) Vu, b E A. (2.24) 

Note, that this inner product is degenerate for the components a7, ag and ag with the 
following S-numbers: 

S(a7) = S(Q) = f3, S(a9) = f2,*4. (2.25) 

Eq. (2.24) induces also an inner product on A, which depends on u = (II+, u-) E C2 
and can be completely degenerate 

(a,, b,) = (r o i,(ao), n 0 i,(bo)) = 6u:u!(ao, bo) Vao, bo E do. (2.26) 

Thus we are led to require 

v+ # 0, IL # 0. (2.27) 

We now turn to the last element of the spectral triple, the unbounded self-adjoint operator 
‘D. We construct this operator out of the two operators D, and Bk 

D, = a, + i&,$, D& = -3, - iP &.&, (2.28) 

which are associated to the supersymmetry generators as defined in Eq. (2.9). By construc- 
tion they enjoy the property that all anticommutators of these operators with the supersym- 
metry generators vanish and the only nonvanishing anticommutator is 

[D,, &I+ = -2i&. (2.29) 

Furthermore, we can use them to define the following subalgebras of A: 

d+ = {a E AID&a = 0), A_ = {a E dID,a = 0). (2.30) 
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The algebra A can be generated with the two algebras d+ and A-, i.e. any element a E A 
can be written as 

a= c 
a(0a’) 
+ ' 

ap E A+, a" E A_. (2.31) 

This fact will turn out to be important for the complex structure of the super-Clifford algebra 
and it will be very useful in the computation of &A. 

We only use the two operators for the construction of 27 since the space-time derivatives 
are already encoded in D and 0. In other words, the operator 27 is not constructed out of 
the full set of operators which form a basis of the supersymmetry algebra as a vector space. 
V contains only the generating operators from which the complete algebra is obtained via 
commutation relations. Thus the operator 27 constructed out of D and B has a natural 
interpretation as a square root of the Dirac operator. As a consequence the l-forms of the 
resulting differential algebra will be in the spin i representation of the Lorentz group. 

Having fixed the derivative part of D we still have to construct the “Clifford algebra” part. 
However, since the operators D and D are odd, i.e. they obey anticommutation relations 
the corresponding “Clifford algebra” has to fulfill the following commutation relations: 

naqS _ 778~~ = 2isayB, - - - - rl,rlb - ng’l& = 21&&j+ ‘1”Q - Ij#j’l” = 0, (2.32) 

where the right-hand sides are dictated by the symplectic form which defines the inner 
product on spinors. The na and Sy, have to be related by hermitean conjugation since the 
operator D has to be self-adjoint. Thus Eq. (2.32) defines a Heisenberg algebra which has 
a Unitary representation On tiH = L2(@ @ @). 

The total space ti of the spectral triple is the tensor product of the representation space 
of A and the representation space of the Heisenberg algebra 

‘H=?-tH@& (2.33) 

and the operator D is defined on this space as 

D=rf@Do,+Ti&d. (2.34) 

Unless there is no risk of confusion we drop the tensor notation and simply write n(a) = a 

andD = rfD, +i&p. 

3. The universal differential envelope and the super-Clifford algebra 

Let us start this section with a brief description of the general construction of a generalized 
differential algebra in noncommutative geometry [l] (for detailed reviews the reader may 
consult [ 19,201). 

The first step is to construct the universal differential envelope Qd by associating to 
each element a E A the symbol 6~. $2d is the free algebra generated by the symbols a, 6b 

with a, b E A, modulo the relation 

6(ab) = 6a b + a6b. (3.1) 
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With the definition 

G(a&t . . .6ak) := 6ao8al ...6ak, 
6(&z] . . .&Zk) := 0, (3.2) 

Qd becomes a N-graded differential algebra with the odd differential 6, 62 = 0. By defining 

S(a)* = -6(a*) (3.3) 

the *-operation is extended uniquely to ad. 
The next step is to extend the representation n of A to a representation n_~ of Rd. Since 

[D, a] is bounded for any a E A we can define for all k E N 

TV : nkd + B(‘Ft) 
lr~(au&z, . . .6Uk) = Uo[D, al] ... [D, Uk]. 

(3.4) 

Although rr~ is a representation of the algebra S2d it fails to be a homomorphism of 
differential algebras. The trouble is that from 

xv(w) = 0, wES2d, (3.5) 

it does not follow that 

3r~(f%o) = 0. (3.6) 

Furthermore, there is no natural grading on ker(nv) in general. To obtain a graded differen- 
tial algebra one has to identify these disturbing elements which form a graded differential 
idea1 3. This idea1 is given as [l] 

J” = (kerrrvnQ”d)U~(kerrrvDL2SZ”-‘d). 

J = @S? 
n&J 

(3.7) 

Finally, the generalized differential algebra &A is defined as the following quotient algebra 

R”d 
a&d=- 

J” ’ 
&A = @ 12;. (3.8) 

n&J 

However, before we start to compute J and &d let us first discuss the representation 
rrv of DA. For the spectra1 triple (C”(M), L2(S), fl) the image nb(S;Zd) is the Clifford 
bundle Cl(M) over M [l]. Thus in our case we call the image of rrv, Clvd = rrv(L?d), 
the super-Clifford algebra of the spectra1 triple (A, ‘H, D). From the fact that A is generated 
by chiral and antichiral superfields and 

[f~,, a][qhDU, b] + [v&E, bl[$&, al = 0 Va, b E A, (3.9) 

we conclude that 



86 W Kalau, M. Walze/Joumal of Geometry and Physics 22 (1997) 77-102 

where CZg9’).A and C@‘)d are linear spaces defined as 

The algebra Qd is generated by l-forms a&b E Q’d therefore the decomposition (3.10) 
extends to the images of higher forms 

rrD(Qkd) = &I &-‘.‘)A. 
I=0 

(3.12) 

X c a”‘[D,, , bl')] . . . [L&, b:‘)][s’, cii)]. . . [r’, cf)] 
i 

(3.13) 

with uci) E A, b(‘) E d+ and c (0 E A_. Thus the elements of Cl !$l)d are tensor superfields 
with k holomorphic and 1 antiholomorphic spinor indices. 

Let us now turn to the S-numbers of the elements in ClDd. The a,, resp. sb part of the 
operator D,, resp. Bd shifts the coefficients of higher powers of 8, e to lower powers and 
thus also the number of S+ operators (which coincides with the power of 8,s for elements 
in A) is shifted to lower powers of 8, a. Thus for any element w E Cl$“)d with a 8, 
&expansion as in (2.20) the range for the S-numbers of the coefficients of (0, 3)” is 

S(@j) = (-(k + I+ n), -(k + I+ n> + 2, . . . , k + 1 + n - 2, k + I+ n), (3.14) 

where we suppressed the explicit dependence of n, Tj and S+. 
Again, for any real v E c2 there is a subalgebra of ClDd on which there is a well-defined 

action of supersymmetry. Thus there is an extension of i, as defined in Eq. (2.11) which 
embeds #‘” , i.e. tensor super-fields with k holomorphic and 1 antiholomorphic indices, 

into Cl$‘)d. We define this embedding iyk+l on the components of the (0,8)-expansion as 

iuk+l((e, @“w,,,) = (e, i3)“0cnj~n+k+[. (3.15) 

However, note that (CZDd)Uk+l = iyk+l (4”‘) is not invariant under the action of ID: 

[irl(y&tir, (Cl$“)d),k+r] d (Cl$+‘7’)d)vk+l+I, 

[i?‘j~~&, (Cl$~“d)Uk+,] q (Cl$*‘+‘)d),t+r+l 
(3.16) 
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because these parts of D proportional to 0 resp. 3 which causes a shift of components 
of lower powers of (0, e) to higher powers of (0, ??) whereas the power of V remains 
unchanged. 

However, the embedding iyk+l defined in Eq. (3.15) can be generalized in the following 
way: 

i,,Af/-2m((H, eye,,,) = (0, @nqn)Vn+k+l-2m~ 012mik+l. (3.17) 

For all k, 1 E N and 2m 5 k+l this defines a series of subspaces (CI$,1)d)Vk+,_2m c Cl$“‘d 
which carry a representation of the supersymmetry algebra. It is easy to check that these 
subspaces form a subalgebra of ClDd 

(Cl~~‘)d)u~+,-2,n . D (Cl(r’S)d),r+.~-zn = (Cl ~+r”+s?q)u~+,+,+.,-2(n,+,) (3.18) 

and we define 

2m=k+l 

(Cl,d), = @ @ (C1$,1)d)yk+,-2m. 
k,l&4 in=0 

Note that it is 

ID>. (Cl~d),I c (Cl&),. 

(3.19) 

(3.20) 

4. The generalized differential algebra &A 

Now we turn to the computation of J resp. JD = n=(J). The decomposition of 
7sD(Dkd) in Eq. (3.12) induces the decomposition 

3; = 6 J-$-r.r) (4.1) 
I=0 

and also 

(4.2) 

Since rrD(Jt) = [O) the first nontrivial contributions to 3~ appears at the level of 2-forms, 
which splits into three parts 

(4.3) 

The first two spaces on the right hand side of Eq. (4.3), i.e. the holomorphic and antiholo- 
morphic part of J; are determined by the following line of arguments: for any a, b E A 
we set 
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Thus it is 60 E J2 and we compute 

XD(G@) = rlV%&, al[qs, bl+ [at, bl[qTJ9 aI) 

+~&~/@~, ag, bl + [P, bl@, al) 

= 2iPP[D,, a][Db, b] + 2i-skb[3, n][D’, b]. (4.4) 

From this we conclude that the holomorphic part J’$‘) contains all antisymmetric tensor 

superfields, i.e. 

J-&W = {$?+%J~~ E CI$“)d]ww,B = -~~a} (4.5) 

and also for the antiholomorphic part we find 

J-$*2’ = (~#,~fi E C~$*2)&“B = _W6‘+). (4.6) 

J(2’o) already generates the complete holomorphic part of J& i.e. for any k E N, k 1 2 it v 
is 

k-2 
$30’ = (, cI~-[-2’O)d~~,O)CI~O)d. 

k=O 
(4.7) 

To see that this holomorphic ideal in Cl, (*30’d is the correct ideal it is sufficient to show that 
the holomorphic algebra @,7-L with 

(4.8) 

is a differential algebra. The algebra defined in Eq. (4.8) contains only totally symmetric 
tensor super-fields, i.e. it is 

where (crt . . . Ck!k) denotes the sum over all permutations of the enclosed indices. The map 

?D (*“) from the holomorphic super-Clifford algebra onto the holomorphic differential alge- 
bra can be most conveniently defined as 

CD 
(k’3 : c$ko’d _ @.o)d, 

ap(p . . . f” w, I... ,,> = ZU’ . . . zcykwu ,... (yk’ 

(4.10) 

where (Pi) denote the basis l-forms which are complex, Grassmann-even, vectors with 
two components, i.e. z E C2 and 

zcrzB - $zU = 0. (4.11) 
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The holomorphic differential dh on @,A is a differential of degree (l(O) 

d,, : @.“)d _ @+‘.u)/, 

89 

1 k+l (4.12) 
dh(za’ . . .Z’YkWq...(Yk) = -z ffI . . 

k+l 
. zak+l 

c Da, ~a,... 
I=1 

Since 

D,D,g + DgD, = 0 (4.13) 

it is 

d; = 0. (4.14) 

Also it follows from this anticommutation relation by the graded Jacobi identity that for 
any 1~~ ,... (yk = ao[D,, , al]. . . [Dak, ak] it is 

d/,(z”’ . .znkw, ,... a,) = z”O...z”k[D,,,ao][D,,,u~]~..[D,k,ak], (4.15) 

which shows that (@,A, dh) describe correctly the pure holomorphic part of f2,d. 
The antiholomorphic part of i2,d can be obtained by analogous arguments or, altema- 

tively, by the fact that the holomorphic and antiholomorphic part are related by hermitean 
conjugation: 

(c/$.“‘d)* = C$$k’d + (~-$.o’)* = f$k’ 

and thus one finds for the anti-holomorphic differential algebra f2id 

a$-+.l$,k)d _ &o&d, 

(4.16) 

,bn,k$'jk, . . .qbkwh,..kk) =ziv, . .TbkwdrPkk, (4.17) 

where (& ) denotes the complex conjugate of (P ). The antiholomorphic differential ds; 

also is related to dh by complex conjugation and is given as 

d+$.k’A + Q;qk+‘)d, 

k+l 
d__(z&, . . . Tivk wbl-‘iyk) zz ’ -& . .T&,+, 

k+l c o*’ Wdrl...iY/_ldr/+l...~k+l 
. (4.18) 

I=I 

Again it is 

d; = 0. (4.19) 

Having computed the purely holomorphic and antiholomorphic part of &d we now 
turn to the mixed forms of L&d, i.e. to fir, (k")d with k # 0 and 1 # 0. Thus we have to 
determine the correct product of holomorphic and antiholomorphic forms such that the total 
differential d= on SZDd is nilpotent: 

d& = 0. (4.20) 
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Since dD is determined by its action on holomorphic and antiholomorphic forms, it is 

dv = dh + d3; (4.21) 

and hence the product of holomorphic and antiholomorphic forms has to be defined such 
that 

d/,d7;+d7;dh = 0. (4.22) 

However, since Da and Db do not anticommute, Eq. (4.22) is not fulfilled for the product 
which is induced from Cl&. Thus there is a nontrivial ideal in Cl& which is generated 
by J$? 

J(‘,‘) itselfisgeneratedbyelementsoftheform [D~,a][D,,b+]and[D,,a’][Dd,,b_] 2) 
which obey 

a[D,, b+l = 0, a’[&, b-1 = 0, u,u’cd, b+ Ed+, b_ cd-. (4.23) 

At this point the S-numbers become important. This can already be seen at first component of 
a superfield of the form w = ;rr~(Su), u E J2 ‘A (we use the same labeling of the components 
of superfields as in the expansion in 8, ?? of Eq. (2.8)). For no = qaa[D,, b+] we 
compute for the first component of w in the 8, &expansion 

Wticuts=2 = a3&2als=2 = U3,,yirbS=2, 

wldtculs=-2 = a3d2als=-2 = v3,d,Is=-2, 

~iycyls=o = a3&2als=o # ~3cx~ls=o7 

(4.24) 

whereas the S = 0 part of the third component of u in the 8,8-expansion is given as 

u~~~I.s=o = a3&2aIs=o - 2ial BIYdl. (4.25) 

Therefore we conclude that the first component of superfields in CZg”)d with S = f2 are 

never in J$“‘. However, we also see from Eq. (4.25) that there is for any wtdcy ]s=o, given 
as in Eq. (4.24), an element u E Q ’ A such that 

n=(v) = 0 and not = $?j~wt~]~=u. (4.26) 

Strictly speaking, for no = 0 it is not sufficient that ~r(u)3 = 0. However, it is straight- 
forward to check that one can arrange a and b+ such that all other components of rr~ (u) in 
the 0, 8-expansion vanishes. 

Thus we have identified all elements of the form ~l’)j&b~~) with al’), bi’) E C(M) 
as elements of J$,“. Since J is an ideal we can multiply such elements with arbitrary 
elements of A and obtain 

N= 

I 

~u(i)p.b(i), 

i 

(4.27) 

Note that if we had not generated the algebra A by a spinor doublet which are distinguished 
by the S-numbers, the space J$“’ would be the whole space Cl$“)d and thus there would 
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be no differential form with both holomorphic and antiholomorphic indices. The reason for 
this is that due to the S-numbers the range of the &-part of D, is larger than the range of 
the i&&$-part of D, which would not be the case if there is no split of components caused 
by S-numbers. 

What remains to be shown is that we have determined all of & (“I’, i.e. we can replace the 
“C” by “=” in Eq. (4.27). For this purpose it is convenient to define a projection-operator 
PF’ which projects the components of the 8,8-expansion of any superfield w E Clg-“.k’A 
onto the parts with the highest S-numbers i.e. for w E CI$.“‘A with k + 1 = n. k # 0. I # 0 
and 

IS( = n> lS(w2)l = IS(w3)l = n + 1, 

1s(w4)1 = is(wS)l = 1s(w6)1 = n + 2, (4.28) 

IS(w7)l= IS( = n + 3, lS(w9)l = n + 4. 

it is 

P,;“‘(w) = w (4.29) 

and P:‘(w) = 0 for all w E Clg”)A which do not have components with S-numbers as 
in Eq. (4.28). For later convenience we extend the definition of Ps to the holomorphic and 
antiholomorphic part of CIDA: 

Pp’w = w VW E (@“‘A + CIg’“‘A). (4.30) 

Before we discuss the ideal generated by N let us check that at the level of 2-forms N 
is the correct space by which one has to divide Clg.” A in order to obtain a well-defined 
differential. First we note that 

ker Pc2’ fl CI(“” s D A=N. (4.31) 

Let w~(a(~‘6b(“) = u be an arbitrary l-form. We compute for the components of P,:” 
(n~(Sa(“Gb(“)) with a holomorphic and an antiholomorphic index 

P;2’([D,, a”‘][&, b(‘)]) + P;“([&, a”‘][&, h”‘]) 

= Pf’([&, a”‘][J. @I) + pQ’([g. 013 s CY1 a”‘][a,, b”‘]) 

= Pj%kY, aqa,, b(‘)]]+) + Pf’([&. a”‘[&, l#‘]]+) 

= pyCL+, VI+) + P;2’([&$, VI+). 

From this we conclude that if u = 0 then it is 

Pc2)([Dar a(‘)][~. b ’ 1) + Pc2’([B. s a, (“ s a3 &‘][D a, $‘I) = 0 

(4.32) 

(4.33) 

(4.34) 

which implies that 

N = J$“. 
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We now mm to the ideal which is generated by N. With the definition of PS given in 
Eqs. (4.28) and (4.30) it is straightforward to check that it is 

P(k+‘+m+n)(~~wZ) = P~+‘)(w,)P~+“)(w~), s wI E Cl$“d, w2 E @$I 

(4.35) 

and 

ps (k+1+2)(~, w2) = 0, w1 E @‘)A, w2 E N. (4.36) 

Thus the ideal I generated by N is given by the kernels of the projectors PF’, n E N: 

I = U ker PF' . (4.37) 
nz2 

From this it follows that product of holomorphic and antiholomorphic forms is defined as 
follows: for any v = zcyI . . . z”~v~,...~~ E @“)A and w = ,& . . .I?&, w’l’.‘“’ E @“)A it 
is 

vw = zUl . . .Zakj& . . .&&+‘)(v, ,,,, cukw’-+~)~ (4.38) 

Thus we define the map a$*” from the super-Clifford algebra to the superdifferential 
algebra for any k, 1 E N: 

The extension of dh and di; to the mixed forms in 52, (k”)d is obtained with the help of the 
projection Ps: 

d/, : 52~“h + f$, (k+l,l)/j 

dh(w) = z~@+'+')(&w - (-l)(k+~~~~a) = zaPf+f+')([&w]) 
(4.40) 

and 

di; : i2$% --_, f2, (k,l+l)d 

+-(w) = Zd,pf+‘+‘)(3w _ (_l)(k+l)W2) = zdrpf+l+‘)([B‘+, wl). 
(4.41) 

The nilpotency of the holomorphic and antiholomorphic differential is again ensured by 
the symmetrization of the holomorphic and antiholomorphic indices. What remains to be 
checked is that 

dhd7; f d7;dh = 0. (4.42) 

However, this equation can be verified by the following computation: For any w E @“)d 
it is 
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dh(d7;W) =~&d/Jp~+~+‘)(&u)) = Z,Zap~+‘+*)(D,(p~~+~+‘)(~~))) 

= && pf+l+*)(&3 w) (4.43) 

and also 

dj$fhW) =Z~dj;(PS(k+~+t)(D&I)) = ZUZhP~+‘+2)(Dir(p:k+l+‘)(D,ll?))) 

= za~&P~+~+*)(B?IauI). (4.44) 

Thus it is 

(&Ii; + d&)(W) = Za;aP~+l+*)((&P + 551n)w) 

= za~~~k+1+2)(2iflclaw) = 0. (4.45) 

From this it follows that dD = dh + dT; is a nilpotent differential with dk = 0 on n-forms 
n E N. This completes the construction of l2Dd. 

Note that the generalized differential algebra 1;2Dd itself does not contain any information 
of the underlying manifold M in the sense that the differential forms in f2Dd and the 
differential do not depend on space-time derivatives. Although for the construction of Q,d 
the presence of M played an important role, it turned out that all dependence on P(M), 
via the &part of V, is contained in the differential ideal J. Thus RDd is a generalized 
differential algebra associated to the finite-dimensional Grassmann algebra in A which is 
multiplied by P(M). For differential forms in f2,d which have both, holomorphic and 
antiholomorphic indices, this statement is a direct consequence of Eq. (4.32). 

For the pure holomorphic forms one can perform a change of coordinates 

XP -+ y! = xW - i&+‘8. (4.46) 

This induces the following transformation of the operators D, and Bb: 

D, - L$--’ = a,, & + jj!-’ = (Y --ad, - 2iP &b. (4.47) 

Since the pure holomorphic forms are built only out of commutators with D it follows from 
Eq. (4.47) that they do not depend on space-time derivatives. 

For the pure antiholomorphic forms there is a similar change of coordinates 

XV --+ yy = x@ + it9aKLB, (4.48) 

which leads to 

D, -+ DC+’ = a, + 2i&$, oi, ___+ B(f) = -3.. CY CY (4.49) 

Thus we conclude that the pure antiholomorphic forms do not depend on space-time deriva- 
tives. 

Furthermore, we observe that differential forms with holomorphic and antiholomorphic 
indices are invariant under transformations (4.46) and (4.48), i.e. 

ps @+‘)(w(x)) = P$+‘)(w(Y+)) = pf+‘)(~(y_)) VW E C@“d, k, 1 > 0, 

(4.50) 

which is a direct consequence of Eqs. (4.47) and (4.49). 
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As a result of this discussion we may relate the generalized differential algebra Ovd to 
the algebra C”(M)@A((@, e) x c2), where A((0, e) x C”) denotes the &-graded analog 
of the de Rham algebra over the Grassmann algebra generated by (0,e) x C2. Such &- 
graded de Rham algebras have already been studied in the framework of noncommutative 
geometry in [2 l] where the relation between closed de Rham currents and cyclic cocycles 
over a Grassmann algebra was established. 

However, the algebra &A is not isomorphic to Cm @ A(((?, e) x UZ2) because of the 
projection operator Ps. The definition of PS in Eqs. (4.28),(4.29) and (4.30) can naturally be 
transferred to A((0, e) x c2). With this projection operator P.y defined on Cc0 @ A((0, ??) x 
UZ2) (where Ps is extended by the identity on C”(M)) it is 

&A = Ps(C”(M) @ A((e, e) x c2). (4.51) 

Strictly speaking, the identification of pure holomorphic form and pure antiholomorphic 
form involves also coordinate transformations of the form Eqs. (4.46) and (4.48). 

5. The inner product and supersymmetry transformations 

With the generalized differential algebra Q,d we have all necessary objects at hand 
to construct the covariant derivative and curvature, the main objects in Yang-Mills theory. 
However, what is still missing is an inner product on Q,d which would allow us to define 
an action. The standard procedure in noncommutative geometry uses the fact that there is a 
natural inner product on ClDd which induces an inner product on QDd [ 11. In principle we 
shall also follow this construction although there will be some important deviations from 
the usual procedure. 

Let us first define an inner product on ClDd. Therefore we recall that a general element 
w E Clg,‘)d is of the form 

rl @I . . fqj&, , . . ij&, c3 w:; I:::, (5.1) 

where the first factor acts on tiH and the second factor acts on ‘H, . Using this notation, we 
define 

X(k,l) = (w;;:::$ )O)]w E Cl$,‘)d), (5.2) 

which is completely analogous to the definition of 7-l~ in Eq. (2.23). Again this allows us 
to use the inner product on ‘F& for the definition of a (degenerate) inner product on Clg”)d 
for any k, 1 > 0 

(olu) = ((w;;:::;;)O)), (u$!.‘::;; IO))), w, u E Cl$‘)d. (5.3) 

This inner product is degenerate for the same reason as the inner product (2.24) on A is 
degenerate. However, on the subspaces (Cl$‘)d) Uk+I-2m, 2m 5 k + 1, the inner product is 
nondegenerate if one of the components of u E c2 is nonzero. The natural inner product 

On J@” and the inner product defined in Eq. (5.3) are related by 
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(iuk+l-2m (oo), iv!+2n (uo)), 

(2(k + 1 + 2 - m - n))! 

= ((k + 1 + 2 - m - TZ)!)~ 
(u+v-) k+l+2-m-n two, “o) 

@(k + I+ 2 - m - n))! cv 
= ((k+l+2-m-n)!)* + 

U_)k+l+2-m-n 

s 
(w*“o)( _ 

0 eeeo 

M 

(5.4) 

for all 00 E (C1$‘1)d)uk+l-2m and vu E (Cl$‘l)d)Uk+,-zn. Since it is our aim to construct 

an action which is invariant under supersymmetry transformation we are interested only in 
inner products on the spaces (Cl$“)d) uk+/~2m. For later convenience we rescale these inner 
products 

(w v), = ((k+l+2-m-n)!)2 
1 1 

(2(k + 1 + 2 - m - n))! 
(u+v-1 -k-/+m+n @, “), 

w E (CI$.‘)d)Uk+,-zm, u E (CI$‘l)d)l,t+,-zn (5.5) 

such that iuk+~m2m becomes an isometric map. 
We now come to the discussion about the relation of &A and supersymmetry trans- 

formations. Clearly we can transfer the embedding i, of tensor supetlield from ClDd to 
find, i.e. we define the subalgebra (n,d), c 0Dd which carries a representation of the 
supersymmetry algebra for any k, 1 E N as 

(Q’k”)J1) = 

Note thatIix ‘) ’ 

@’ 0 i&q”). (5.6) 

=’ 1s an invertible homomorphism from (C1g‘l)d)Uk+, to (fi$“d), if k. 1 r 0. 
Therefore we can define for any k, 1 > 0 

cck.‘) : (n$‘)d), - (Cl;*‘)d)““+, ” (5.7) 

as the inverse of iuk+l : 

(5.8) 

This map can be used to define an inner product on (S2Dd), which is induced by the inner 
product on (ClDd)“. However, the invariance under supersymmetry transformations of this 
product is not automatically guaranteed. 

For the pure holomorphic part of S2Dd we find that the image of dh acting on (RDA), 
is not contained in (fi,d), 

dh(Q$*o)d), Q(L$‘“)d),. (5.9) 

The reason for this is the same as the one discussed at the end of Section 3: the i&&F-part of 
dh generates terms which are not in (DDd) “. The same is true for the pure antiholomorphic 
forms and the differential di;. 

The situation is different for forms with mixed indices since here the disturbing part of 
the derivative is projected out. Thus it is for all k, 1 E N with 1 > 0 

dhw E (@+‘*‘)A),, VW E ($“d)“, (5.10) 



96 W Kalau, M. Walze/Journal of Geometry and Physics 22 (1997) 77-102 

and for all k, 1 E N with k > 0, 

dp E @“+?4),, Vo E (n$‘)d),. (5.11) 

However, supersymmetry transformations do not commute with the differentials: 

[dh, <F&]o = 1z~j3cr&$o, o E (@‘)d,,, 1 > 0, 
(5.12) 

[d7;, (EQ)~]w = 1~~jf&p VW E (@)d)“, k > 0, 

where it is (Ed, @((u)) = (Ed, 8) @ u. 
On the other hand, it is for any k, 1 > 0 and 0 < 2m 5 k + 1 

(k,O (Cl$,‘)d)+Zm c & . (5.13) 

Thus it is for any w E (G’$“)d), 

d,,w = ~~~~+~+“(~~c~~,‘)(w)) = ~~~~+‘+‘)(D,c~~.‘)(w)). (5.14) 

Although w’ = qUZ-‘$k+r+l)(DUc$k~” (w)) also is not covariant under supersymmetry 

transformations, the product of w’ with any other element in (G$"A), with covariant 
transformation properties under supersymmetry transformations is invariant, i.e. for any 
v(@+“‘)d), with u = CT= (k+lJ) o i”k+l+~ (vu) and o = aD (‘J) 0 ivk+l (00) it is 

(5.15) 

The same arguments apply for the antiholomorphic derivative, i.e. for dhw E (Q$“fl)d)v 

the product (cLk*‘+‘)(v), ??csk”) w)i is invariant under supersymmetry transformations for 
all u E ($“+‘)d),. 

6. Supersymmetric Yang-Mills theory 

Once the generalized differential algebra &A is known the covariant derivative and 
curvature can be defined [I]. We repeat from this general procedure only the basic definitions 
which allows us to fix our notation. A comprehensive presentation of this topic can be found 
in [1,19,20]. 

The covariant derivative is defined with respect to some gauge group which is in this 
framework 

G = (u E d(uu* = u*u = l}. (6.1) 

There is a representation of this group on ti, the Hilbert space of the spectral triple (A, II-L, D) 
which is given by IT, the representation of A. The operator 2) can be extended to a covariant 
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derivative by adding a connection l-form A E QAd 2 nD(fZ'd), i.e. we define the 
covariant derivative as an operator acting on 3-t by 

Y=D+A, (6.2) 

where 4 E n,(Sf? ‘d) is hermitean and obeys the following transformation rule 

A---+ A’=u&*+uDu*. (6.3) 

The operator J7transforms covariant under gauge transformations 

yo--+ y’=u&*. (6.4) 

Alternatively, the covariant derivative can be defined as an operator acting on forms, i.e. as 
an operator acting on &A ~3 7-l 

V=dv+A, (6.5) 

where A = CJ&,( 4) E Q&d denotes the l-form corresponding to A. Of course, V also 
transforms covariantly under gauge transformations. 

The curvature F is defined as the square of the covariant derivative 

F=VV=d=A+AA (6.6) 

and it is easy to show that also in the general framework of noncommutative geometry this 
definition leads to a 2-form, i.e. F E C?;d, which transforms covariantly under gauge 
transformations. 

Let us now apply this general construction to the case where A, is the tensor product of 
the commutative algebra of superfields as defined in Section 4 and the algebra of complex 
n x n-matrices, M,..(C), i.e. 

s\, = A @ M,..(C). (6.7) 

The representation space ‘If has to be extended by a representation of IPI,,~,, such that 
it becomes a representation space 7i, of A,. The only irreducible representation of the 
associative algebra M,, xn (C) is C”. Thus we take this irreducible representation and obtain 
for 3-1, 

RH, =‘H@C. (6.8) 

The operator D is extended trivially to an operator V,, 

PI = v @ lnxn, (6.9) 

where D is defined as in Eq. (2.34). As a consequence of this setting the generalized 
differential forms in &A become matrix-valued generalized differential-forms. 

The gauge group G is the group of superfields which are generated by the super-Lie 
algebra g: 

g = (A E Al A* = A). (6.10) 
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Thus any u E G can be written as u = exp(iA), A E g. Obviously the first component of 
any u E G of the 8, &expansion is a bosonic U(n)-gauge transformation. However, any 
u E G represents a full superlield and therefore the bosonic gauge group is extended by a 
nilpotent part, containing also Grassmann-odd transformations. 

We saw that the derivative dD of the f&d, constructed in the previous sections, splits 
into a holomorphic part dh and an antiholomorphic part ds;. Also the space of 1 -forms 52&d 
can be decomposed into a holomorphic part L+, "30!, and an antiholomorphic part Q$l)d. 
Thus we can introduce the holomorphic and antiholomorphic derivative 

V=Vh+V7;, Vh=dh+Ah, Vz=dT;+A, (6.11) 

where Ah = PAa, resp. A7; = T&A& denotes the holomorphic, resp. antiholomorphic part 
ofA=Ah+A7;. 

This split propagates to the 2-forms where we can decompose the curvature as follows: 

F=Fh+Fx+F, (6.12) 

with 

Fh = V,2 = dhA/, + AhAh, F7; = V; = d7;A7; + AxA, (6.13) 

and 

F,=vhhV7;+V7;Vh=dhAS;+d7;Ah+AhA7;+AT;Ah. (6.14) 

As in the usual approach to supersymmetric gauge theory the full curvature contains su- 
perfluous components [ 141 and one has to get rid of them without spoiling covariance. The 
standard procedure is to impose the constraint that all components of F with two spinorial 
indices vanish. In our case, this clearly would be too strong since it would imply that the 
complete curvature vanishes. However, the standard constraints in the usual approach have 
different reasonings: the requirement that the vectorial part of the curvature, i.e. Fati, should 
vanish is simply a redefinition of fields which is possible because of the presence of the 
torsion term. This torsion term is absent in our approach. Therefore the constraint Folb = 0 
would be a real restriction and thus we drop this constraint. 

The other constraints arise as a consequence of the chirality conditions which reads 

V,,@ = 0, V7;@ = 0, @,QE FtFI,. (6.15) 

These conditions can be applied consistently only if 

V,,V,, = F/, = 0, V3;V7; = F7; = 0. (6.16) 

This leads to the same restrictions on A as in the conventional approach. In components the 
constraints read 

Fap = &A,Y +DgA, + A,Ap + AflAp = 0 
F&b = &Afi + D/jAcr + AhAB + ABA& = 0. 

(6.17) 
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The most general solution to the constraints in Eq. (6.17) are 

A, = T-IL&T, Ati = S-‘&S, (6.18) 

where T, S E A are general invertible superfields. They are related by the requirement that 
yis a self-adjoint operator. Thus it is J%* = 4 and hence Aha = -Ah&. This implies 

S* = T-1. (6.19) 

Inserting this result in Eq. (6.14) we obtain for the remaining part of the curvature: 

Fak = P;(D,(T*&(T-‘)*) +-i;j&T-‘D,T) 

+(T*&(T-‘)*)(T-IDoT) + (T-‘D,T)(T*&(T-I)*)), (6.20) 

which can be rewritten as 

Faa = P~2’(T*~~(W-‘DaW)(T-‘)* - 2iT*&e(T-I)*) 

= Py’(&(W-I&W)) = T*W&T-‘)*, (6.21) 

where we have set W = TT* and 

W& = P~)(D,(w-‘D, W)). (6.22) 

Comparing Eq. (6.22) with supersymmetric Yang-Mills theory in the chiral representa- 
tion [22] we see that 

w, =0,&w-‘&w) (6.23) 

is the curvature in the usual approach to supersymmetric gauge theory if W E do. There 
it is only this quantity which transforms homogeneously. Whereas it is straightforward to 
check that in our framework Wab transforms homogeneously under chiral transformations 
C with T?;jC = 0: 

T + T’ = C*T, 
w + w’ = c*w.E, (6.24) 

Wa& - WL& = z-‘w&. 

The reason for the homogenous transformation property of Wad! is that the inhomogenous 
term which arises at the level of C1$“)d is in &‘,“I’. 

This allows us to utilize the Wess-Zumino gauge [14] and to rewrite Eq. (6.22) as 

W = z-‘wWZc cx(Y cici (6.25) 

with 

Wa5” = Bb (exp - VWZ D, exp VWZ) (6.26) 

and 

VWZ = -&T@~A, + i0f&?T - i%%x + ~OO@D. (6.27) 
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Thus we infer that the curvature contains a vector field, a Majorana spinor and scalar field 
modulo chiral gauge transformations. 

If it is W E A, then it is z~&IV~ E (Q$"'d), and hence z‘%F$ E (f2g"'d),. From 
Eqs. (6.25) and (6.27) we conclude that the curvature is built out of a vector multiplet modulo 
chiral gauge transformations. Since we want to construct a supersymmetric invariant action 
we restrict ourselves to the case T E A, and hence W E A,. Furthermore, we can write 

T = L(To), W = i,(Wo). (6.28) 

According to our discussion in the previous section a supersymmetric invariant scalar I for 
F2 is given by 

I = tr ((T*(~(W-‘D’YW))(T-l)*, T*(Dk(W-‘D, W))(T-I)*)) 

=tr((lY(W-‘D”W),E~(W-lDaW)) 

=tr (DU(W~‘D’YW~)~~(W~lD~W~))lgeee I 
M 

= -tr 
s 

((w,-‘~“w0)~~(w~‘~~~0))l,,,, 

M 

= -tr s (02(w~lDawo)D2(w~~Daw~))l~e. 
M 

Inserting Eqs. (6.27) and (6.25) in Eq. (6.29) we obtain 

which is the action for supersymmetric Yang-Mills theory [ 141. 

(6.29) 

(6.30) 

7. Conclusions 

In this article we have generalized the concept of the spectral triples to algebras which 
contain both bosonic and fermionic degrees of freedom. The unbounded self-adjoint op- 
erator of this triple was constructed out of the spinorial generators of the supersymmetry 
algebra, i.e. the covariant spinorial derivatives. The construction of the generalized differen- 
tial algebra out of this spectral triple was discussed in some detail. As a result we obtained 
that l-forms of this differential algebra are in the spin i-representations of the Lorentz- 
group and, more generally, that n-forms are in the spin in-representations. This once more 
justifies the well-known notion that the covariant spinorial derivatives are the square-roots 
of the Dirac operator. 

For the resulting generalized differential algebra we found that only the finite-dimensional 
structure of the Grassmann algebra in A is important, i.e. the generalized differential algebra 
itself does not contain more information about the underlying bosonic manifold M than 



W Kalau, M. Walze/Joumal of Geometry and Physics 22 (1997) 77-102 101 

P(M). The bosonic part of the algebra becomes important when we consider supersym- 
metry which can be implemented only on a subalgebra of A and thus on a subalgebra of 
ClDd and &A: the construction of an inner product on S2Dd which is invariant under 
supersymmetry transformations involves space-time derivatives. 

It is this inner product which marks important deviations from the standard approach to 
Yang-Mills theory in noncommutative geometry: 
(i) The representation of SZd on ‘?t allows to associate to each element in C/DA an element 

in ?t and therefore the inner product on ‘l-t induces an inner product on ClDd. We did 
not use the Dixmier trace for the definition of the inner product and thus we were not 
restricted to Euclidean space-time. 

(ii) Since the inner product on ClDd defined via the inner product on X is indefinite on 
the subalgebra carrying a supersymmetry representation (and even degenerate on the 
whole algebra CIDd) we cannot apply the standard procedure for the construction of an 
inner product on O,d. Usually one identifies RDd as the orthogonal complement of 
the ideal 3 in ClDd. This is not possible in our case since the inner product on ClDd 
is not positive definite. Therefore we had to use another criterion to map elements 
of Qvd into ClDd. For the subalgebra of Q,d, which carries a representation of 
the supersymmetry algebra, we employed the requirement of invariance of the inner 
product under supersymmetry transformations. 

Equipped with this inner product on the generalized differential algebra we followed the 
standard procedure to construct Yang-Mills theory. However, in our approach to Yang- 
Mills theory we find as an immediate consequence of the relation between form degree 
and representation of the Lorentz group that the curvature 2-form is a Lorentz vector and 
therefore the lowest component in the 8,8-expansion of the curvature superfield is the 
vector potential. The curvature superfield does not contain any space-time derivative. Again 
it is the requirement of invariance under supersymmetry which generates terms containing 
space-time derivatives in the action for supersymmetric Yang-Mills theory. 
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